Factor the sum and difference of cubes.

1.
$$x^3 + 27$$

2.
$$64y^3 - 27$$

3.
$$32x^6 - 500x^3$$

4.
$$f(x) = x^3 + 3x^2 - 6x - 8$$

A. What are all of the possible rational zeros of f(x)?

B. Determine all of the rational roots. Show work.

Solve each.

$5. \ x^2 - 4x + 4 = 0$	$6. x^2 - 81 = 0$	7. $x^2 + x - 12 = 0$
$8. x^3 - 5x^2 - 4x + 20 = 0$	$9. \ 2x^2 + 13x - 24 = 0$	$10. \ 6x^2 - 31x + 5 = 0$
$11. 4x + 12 + x^2 + 3x = 0$	$12. \ x^3 + 5x^2 - 9x - 45 = 0$	13. $x^2 - 8x - 48 = 0$

Multiple Choice Select the best choice for each problem.

14. Find all of the rational zeros of $g(x) = 2x^3 + 4x^2 - 2x - 4$.

A)
$$x = \{2, 4, -2, -4\}$$
 B) $x = \{-2, 1, 2\}$ C) $x = \{4, 1, -4\}$

B)
$$x = \{-2, 1, 2\}$$

C)
$$x = \{4, 1, -4\}$$

D)
$$x = \{-4, -1, 4\}$$
 E) $x = \{-2, -1, 1\}$

E)
$$x = \{-2, -1, 1\}$$

15. Consider $g(x) = 2x^3 + 4x^2 - 2x - 8$.

If we were to list all of the possible rational zeros using the rational root theorem (p/q) for the polynomial we would have how many possible rational zeros?

- A) 3
- B) 4
- C) 5
- D) 8
 - E) more than 8

Find all zeros and list any multiplicity.

16.
$$y = x^3(x-2)(x+4)^2$$

17.
$$y = x(x + 2)^2(x + 3)$$
 18. $y = x^4 + 7x^3 + 12x^2$

18.
$$y = x^4 + 7x^3 + 12x^2$$

Find all the zeros of the function using synthetic division, factoring or quadratic formula. Find p/q's.

19.
$$f(x) = 2x^3 + 3x^2 - 59x - 30$$

20.
$$f(x) = x^3 - 5x^2 - 48x + 108$$

21.
$$f(x) = 10x^4 - 13x^3 - 21x^2 + 10x + 8$$