Properties of Radicals HW

Simplify the following radicals and circle your final answer. Do not give decimal answers.

1) $\sqrt{24}$
2) $\sqrt[3]{1000}$
3) $\sqrt[3]{-162}$
4) $\sqrt{512}$
5) $\sqrt[4]{128 n^{8}}$
6) $\sqrt{98 k}$
7) $\sqrt[5]{224 r^{7}}$
8) $\sqrt[3]{24 m^{3}}$
9) $\sqrt{392 x^{2}}$
10) $\sqrt{512 x^{2}}$
11) $\sqrt[4]{405 x^{3} y^{2}}$
12) $\sqrt[3]{-16 a^{3} b^{8}}$
13) $\sqrt[4]{128 x^{7} y^{7}}$
14) $\sqrt[3]{16 x y}$
15) $\sqrt[6]{448 x^{7} y^{7}}$
16) $\sqrt[3]{56 x^{5} y}$
17) $6 \sqrt[3]{192}+7 \sqrt[3]{24}-\sqrt[3]{3}$
18) $4 \sqrt{8}-\sqrt{72}+\sqrt{3}$
19) $3 \sqrt{12}+\sqrt{3}+2 \sqrt{27}$
20) $6 \sqrt[3]{24}-\sqrt[3]{81}-2 \sqrt[3]{3}$
21) $7 \sqrt[70]{8}+5 \sqrt[70]{8}-2 \sqrt[70]{8}$
22) $4 \sqrt{24}+\sqrt{18}-5 \sqrt{54}$
23) $\sqrt[3]{108}+\sqrt[3]{32}$
24) An automotive engineer is trying to design a safer car. The maximum force a road can exert on the tires of the car being designed is 2000 pounds. What is the maximum velocity in ft / s at which the car can safely round a turn of radius 320 feet? Use the formula $V=\sqrt{\frac{F_{c} r}{100}}$, where F_{c} is the force the road exerts on the car and r is the radius of the turn.
