Properties of Radicals HW

Simplify the following radicals and circle your final answer. Do not give decimal answers.

1)
$$\sqrt{24}$$
2) $\sqrt[3]{1000}$

3) $\sqrt[3]{-162}$
4) $\sqrt{512}$

5) $\sqrt[4]{128n^8}$
6) $\sqrt{98k}$

7) $\sqrt[5]{224r^7}$
8) $\sqrt[3]{24m^3}$

9) $\sqrt{392x^2}$
10) $\sqrt{512x^2}$

11) $\sqrt[4]{405x^3y^2}$
12) $\sqrt[3]{-16a^3b^8}$

13) $\sqrt[4]{128x^7y^7}$
14) $\sqrt[3]{16xy}$

15) $\sqrt[6]{448x^7y^7}$
16) $\sqrt[3]{56x^5y}$

17) $6\sqrt[3]{192} + 7\sqrt[3]{24} - \sqrt[3]{3}$

18) $4\sqrt{8} - \sqrt{72} + \sqrt{3}$

21) $7^{70}\sqrt{8} + 5^{70}\sqrt{8} - 2^{70}\sqrt{8}$

22) $4\sqrt{24} + \sqrt{18} - 5\sqrt{54}$

23) $\sqrt[3]{108} + \sqrt[3]{32}$

24) An automotive engineer is trying to design a safer car. The maximum force a road can exert on the tires of the car being designed is 2000 pounds. What is the maximum velocity in ft/s at which the car can safely round a turn of radius 320 feet? Use the formula $V = \sqrt{\frac{F_c r}{100}}$, where F_c is the force the road exerts on the car and r is the radius of the turn.