

Spring 2018

Name:	

$$(x-4)(x-2)=0$$

$$x=4,2$$
3.) Determine the intervals for: x^2

2.) Solve for x:
$$\left(\frac{-2x}{x+2}\right) + \left(\frac{x}{x}\right) = \left(\frac{4}{x+2}\right)^{3(x+2)}$$

$$-6x + x^{2} + 2x = 12$$

$$-6x + x^{2} + 2x = 12$$

$$-6x + x^{2} + 2x = 12$$

$$(x - 6)(x + 2) = 0$$

$$\boxed{X = 6} = 0$$

$$\boxed{X = 6} = 0$$

3.) Determine the intervals for:
$$x^2 - x - 6 < 0$$

$$(x-3)(x+2) < 0$$

 $x=3,-2$

3,-2		<u> </u>	44	+
	4		ZY.	N
11-2 2	1			

4.) Determine the intervals for: $\frac{x+2}{x-5}$

Asy: X=5	-21 P	
[] H X =]		
Test: -3+2>0	0+2	1

5	-2	SHI	
270	0+	2 >0	•

Without the use of a calculator, find the following for the functions listed: $\frac{1}{\sqrt{8}} > 0$

							0			
	f(x) =	V.A.	H.A.	S.A.	x- intercepts	y- intercept	Holes	Domain	$x \to \infty$, $f(x) \to$	$x \\ \to -\infty, \\ f(x) \to$
4	(x+2)(x-3) 5.) $\frac{x^2-9}{x-1}$ x-1	X=1	None	1 1 6-9 1 1 LP Y= 1X+1	(-3 ₁ 0)	(0,9)	NONE	All R's except x ≠ 1	∞	-20
_ \ \ \	6.) \(\frac{2x+2}{x^2-2x-8}\) (x-4)(x+2)	X=4	N=0	NONE	None	(0,-4)	(-2, - {)	All R's except x \neq 4,-2	0	0
ta	$(x+3)(x-2)$ 7.) $\frac{x^2+x-6}{x+3}$		None	NONE	(2,0)	(0,-2)	(-3,-5)	All R's except X = -3	8	-80
' '	2(x^2+x-12) 2($x+4$)($x=3$) 8.) $\frac{2x^2+2x-24}{x^2-4x+3}$ ($x=3$)($x=1$)	X=1	Y=2	NONE	(-4,0)	(0,-8)	(3,7)	A11 1R5 except x ≠ 1,3	2	2

 $f(x) = \frac{2(x+4)}{x}$

9.)
$$|5x-3|=7$$

$$5x-3=7$$
 $5x-3=7$ $5x=10$ $5x=-4$ $x=2$ $x=-4$

$$\frac{1}{4}x+3 \le 1 \text{ AND } \frac{1}{4}x+3 \ge -1$$

$$+(\frac{1}{4}x) \le -2(4) \quad +(\frac{1}{4}x) \ge -4(4)$$

$$11.) \frac{1}{4}x+3 \le 1 \quad \times \le -8 \quad \boxed{AND} \quad \times \ge -16$$

10.) |5x+1|+6=4

Solution: ___

Use the function $f(x) = \begin{cases} 3x + 2, x \le 2 \\ 1 - x, x > 2 \end{cases}$ to evaluate the following:

12.)
$$f(5) = -4$$

 $-5 = -4$

13.)
$$f(0) = \frac{2}{3(0)+2} = 2$$

14.)
$$f(2) = 8$$

3(2)+2=8

15.) Write the equations defining the piecewise function

$$f(x) = \begin{cases} -3, & \text{if } -4 < x \le -1 \\ 2x + 1, & \text{if } -1 < x \le 1 \\ 2, & \text{if } x > 1 \end{cases}$$

Given $\log_7 5 \approx 0.8$ and $\log_7 9 \approx 1.1$, approximate the value of each logarithm.

O.8+1.1 = 1.9
Write as a single logarithm:

19.)
$$\log_8 15 - \log_8 10$$

$$\log_8(\frac{15}{10})$$

22.)
$$2 \log_3 x = \log_3 (8-2x)$$

$$|\log_3(x^2)| = |\log_3(8-2x)|$$

$$|(2 \times 2 = 8 - 2x)|$$

$$|(2 \times 2 + 2x - 8 = 0)|$$

$$|(x+4)(x-2) = 0$$

$$|(x+4)(x-2) = 0$$

Evaluate:

25.)
$$\log_3 81 = X$$

 $3^X = 81$
 $3^X = 3^4$
 $1 \times 1 = 4$

$$17.1 \log_7 \frac{5}{9}$$

$$\log_{1} 5 - \log_{1} 9$$
 $0.8 - 1.1 = [-0.3]$

$$\frac{\log_{3} y + 2\log_{3} x}{\log_{3} y^{3} + \log_{3} x^{2}}$$

$$\frac{\log_{3} (x^{2}y^{3})}{\log_{3} (x^{2}y^{3})}$$

23.)
$$\log x = \log 16 - \log 12$$

$$\log x = \log(\frac{16}{12})$$

$$X = \frac{4}{3}$$

26.)
$$\log_2 16 = \chi$$

 $2^{\chi} = 16$
 $2^{\chi} = 2^{\psi}$

$$log_{7}5.7$$
 $log_{7}5+log_{7}7$
 $0.8+1=1.8$

$$log_{5}y - log_{5}r^{3} + log_{5}x^{2}$$

$$log_{5}y - log_{5}r^{3} + log_{5}x^{2}$$

$$log_{5}(\frac{1}{3}) + log_{$$

$$09_3 \times^3 = 109_3 64$$

 $31 \times^3 = 364$
 $1 \times = 4$

27.)
$$\log_{32} 8 = X$$

 $32^{X} = 8$
 $2^{6X} = 2^{3}$

 $y = \log_4(x + 3) - 2$

Convert to exponential form:

Convert to logarithm form:

29.)
$$\log_4 \frac{1}{256} = -4$$

$$4^{-4} = \frac{1}{256}$$

32.)
$$6^{-3} = \frac{1}{216}$$

$$O = Q$$

Ing in logarithmic form: $(64)^{-3} = \frac{1}{256}$?

35.) Solve:
$$9^{x-1} = 27^{x-4}$$

 $3^{2(x-1)}$
 3^{3}
 $2x-2 = 3x-12$

$$-X = -10$$

$$2x-2=3x-12$$

$$-x=-10$$
36.) Suppose you invest \$5000 in an account that pays 7.3% annual interest **compounded daily**. At the end of three years how much money can you expect in the account?

can you expect in the account?
$$A = 5000 / 1 + 2073$$

can you expect in the account?
$$A = 5000(1 + .073)$$

Your z score=
$$\frac{2.86}{7}$$
 Your friend's z score= $\frac{3}{7}$ Who did better? Your friend's $\frac{3}{7}$ Who did better? Your friend's z score= $\frac{3}{7}$ Who did better?

- 39.) To find the mean price of beef around the US, stores across the country were randomly chosen to survey. The survey of 400 stores found the mean price to be \$5.80/lb with a standard deviation of \$0.50.0
 - a) Find the 95% confidence interval for the above data.

$$5.80 \pm 1.96 \left(\frac{0.50}{1400} \right) = [5.75, 5.85]$$

b) Find the 99% confidence interval for the above data.

$$5.80 \pm 2.575 \left(\frac{0.50}{1400} \right) = [5.74, 5.86]$$

40.) A normal distribution has a mean of 56 and a standard deviation of 5. Draw a normal curve to represent this.

a) What percentage of values lie between 44 and 59? 71.75%	.72570082
normal caf (44,59,56,5) OR Z=44-56=-74 7=59-56=0,34 34	7175
The mode cut (44,54,56,5) OR E-17-56 =-2.4 7=59-56: 134,54,5	61170
h) What namentana lia ali 502 00 (100) 5	\
b) What percentage lie above 50? 88.49%	1- 1151

c) What percentage lie below 54? 34.46%.
Normal (Af (-9999, 54, 56, 5) OR

Arithmetic:

Recursive Formula Recursive Formula

$$\begin{vmatrix} a_1 = \# & a_1 = \# \\ a_n = a_{n-1} + d & a_n = a_{n-1}(r) \end{vmatrix}$$

Arithmetic Series: Explicit (Closed) Formula Explicit (Closed) Formula $a_n = a_1(r)^{n-1}$ $a_n = a_1 + d(n-1)$

or
$$a_n = a_0 + dn$$

$$S_n = \frac{n}{2}(a_1 + a_n)$$

Determine whether each sequence is arithmetic or geometric. Then find the eighth term.

41.) -72, -58, -44, -30, -16, -2,

Avithmetic
$$Q_8 = -72 + (8-1)(14)$$

42.)
$$-\frac{5}{6}$$
, 5, -30, 180, -1080, 6480,

Geometric $9 = -\frac{5}{6}$

 $S_n = \frac{a_1(1-r^n)}{1-r}$

43.) Find the closed/explicit formula of the sequence: 3, 9, 15, 21, 27, 33, ...

$$a_n = 3 + (n-1)(6)$$
 $a_n = 6n-3$

44.) Write the explicit formula of the sequence

he explicit formula of the sequence:
$$162, 54, 18, 6, 2, \dots$$

$$Q_{n} = 162 \left(\frac{1}{3}\right)^{n-1}$$

Find the series to the given term.

Find the series to the given term.

45.)
$$1+4+16+64+256+....; S_{12}$$

$$S_{12} = \frac{13}{2}(-3-87)$$

46.) $\sum_{k=1}^{13}(4-7k)$

$$S_{13} = \frac{13}{2}(-3-87)$$

47.) An arithmetic sequence has the following recursive model:

$$S_{13} = -585$$

$$S_{13} = -585$$

$$S_{13} = -585$$

47.) An arithmetic sequence has the following recursive model:

