Algebra II
Name \qquad
Factoring: Great Common Factor \& Trinomials where $\mathrm{a}=1$
Period \qquad Date \qquad
Factoring is the reverse of multiplying. To factor an expression means to write an equivalent expression that is a product of two or more expressions.
To find the prime factorization of a monomial, write it as a product of only prime numbers and/or firstdegree variables.

Examples of prime factorization:

- $225=15 \cdot 15=5 \cdot 3 \cdot 5 \cdot 3$
- $48 \mathbf{x}^{3}=8 \cdot 6 \cdot \mathbf{x}^{3}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}$
- $18 x^{2} y^{4}=2 \cdot 3 \cdot 3 \cdot \mathbf{x} \cdot \mathbf{x} \cdot \boldsymbol{y} \cdot \boldsymbol{y} \cdot \boldsymbol{y} \cdot \boldsymbol{y}$

Write the prime factorization of the following monomials. Do not use exponents.
1.) 108
2.) $52 a b^{3}$
3.) $32 x^{5} y^{2}$

To factor polynomials, we first look for a Greatest Common Factor (GCF). That is, the factor common to each term with the largest possible coefficient and the variable(s) to the largest power. In factoring polynomials, remember that we always look first for a Greatest Common Factor (GCF).

Examples of Greatest Common Factors:

- $5 x^{2}-5=\underline{5}\left(x^{2}\right)-\underline{5}(1)=5\left(x^{2}-1\right)$
- $3 x^{4}+12 x^{3}=\underline{3 x^{3}}(x)+\underline{3 x^{3}}(4)=3 x^{3}(x+4)$
- $6 \mathbf{a} \boldsymbol{b}^{2}+9 \mathbf{a}^{2} \boldsymbol{b}-27 \mathbf{a}^{3}=\underline{3 a}\left(2 b^{2}\right)+\underline{3 a}(3 a b)-\underline{3 a}\left(9 a^{2}\right)=3 \boldsymbol{a}\left(2 b^{2}+3 a b-9 a^{2}\right)$

Factor the following polynomials by using the Greatest Common Factor.
4.) $4 a^{2}+8$
5.) $7 x+42$
6.) $2 y-6 x y$
7.) $8 \mathbf{a x}+56 a$
8.) $36 x^{2} y-48 x y^{2}$
9.) $t^{2} n-3 t$
10.) $15 c d-30 c^{2} d^{2}$
11.) $\boldsymbol{a}^{3} \boldsymbol{b}^{3}-\boldsymbol{b}^{2}$
12.) $35 x^{3} y+105 x y$
13.) $17 x^{5}+34 x^{3}+51 x$
14.) $2 x^{7}-2 x^{6}-64 x^{5}+4 x^{3}$
15.) $6 \mathbf{e}^{3 f-11 e f}$

To factor a trinomial like $\mathbf{x}^{2}+7 \mathbf{x}+10$ in general, think of FOIL in reverse. The first term, \mathbf{x}^{2}, is the result of \mathbf{x} times \mathbf{x}. Thus the first term of each binomial factor is \mathbf{x} :
$(x+\ldots)(x+\ldots)$
The coefficient of the middle term and the last term of the trinomial are two numbers whose product is 10 and whose sum is 7 . Those numbers are 2 and 5 . Thus, the factorization is: $(\mathbf{x}+2)(\mathbf{x}+5)$

Try X-Games to find your factors....

Solve each by factoring.
16.) $(a+6)(a+2)=0$
17.) $z(z-1)^{2}=0$
18.) $(3 y+7)(y+5)=0$
19.) $x^{2}-11 x=0$
20.) $2 \boldsymbol{a}^{3}+10 \mathbf{a}^{2}=0$
21.) $x^{2}-12 x+36=0$
22.) $n^{2}-2 n=15$
23.) $x^{2}-7 x=18$
24.) $x^{2}+2 x=99$
25.) $x^{2}=4 x-4$
26.) $x^{2}=14 x-48$
27.) $x^{2}=14 x-45$
28.) $x^{2}-10 x+24=0$
29.) $y^{2}+\boldsymbol{y}=42$
30.) $-x^{2}+6 x=-72$
31.) $30+11 x+x^{2}=0$
32.) $x^{2}+29 x+100=0$
33.) $x^{3}+16 x^{2}+64 x=0$
34.) As an object is propelled upwards, gravity pulls it back to Earth. This relationship can be expressed by the formula $s=v_{i} t-\frac{1}{2} g t^{2}$, where s is the distance above the starting point, v_{i} is the initial velocity, t is time elapsed, and g is the acceleration of gravity. Find how long it will take a model rocket propelled into the air at an initial velocity of $80 \mathrm{ft} / \mathrm{s}$ to return to ground level, if the acceleration of gravity is $32 \mathrm{ft} / \mathrm{s}^{2}$.

