Algebra II		
Factoring: Great Common Factor & Trinomials wh	ere a =	: 1

Name____

Period____Date____

Factoring is the reverse of multiplying. To factor an expression means to write an equivalent expression that is a product of two or more expressions.

To find the **prime factorization of a monomial**, write it as a product of only prime numbers and/or first-degree variables.

Examples of prime factorization:

- $225 = 15 \cdot 15 = 5 \cdot 3 \cdot 5 \cdot 3$
- $48\mathbf{x}^3 = 8 \cdot 6 \cdot \mathbf{x}^3 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}$
- $18\mathbf{x}^{2}\mathbf{y}^{4} = 2 \cdot 3 \cdot 3 \cdot \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y} \cdot \mathbf{y}$

Write the prime factorization of the following monomials. Do not use exponents.

 1.) 108
 2.) 52ab³
 3.) 32x⁵y²

To factor polynomials, we first look for a **Greatest Common Factor (GCF)**. That is, the factor common to each term with the largest possible coefficient and the variable(s) to the largest power. In factoring polynomials, remember that we <u>always</u> look first for a **Greatest Common Factor (GCF)**.

Examples of Greatest Common Factors:

- $5\mathbf{x}^2 5 = \underline{5}(\mathbf{x}^2) \underline{5}(1) = 5(\mathbf{x}^2 1)$
- $3x^4 + 12x^3 = \underline{3x^3}(x) + \underline{3x^3}(4) = 3x^3(x+4)$
- $6ab^{2} + 9a^{2}b 27a^{3} = 3a(2b^{2}) + 3a(3ab) 3a(9a^{2}) = 3a(2b^{2} + 3ab 9a^{2})$

Factor the following polynomials by using the Greatest Common Factor.

4.) $4a^2 + 8$ 5.) 7x + 426.) 2y - 6xy7.) 8ax + 56a8.) $36x^2y - 48xy^2$ 9.) $t^2n - 3t$ 10.) $15cd - 30c^2d^2$ 11.) $a^3b^3 - b^2$ 12.) $35x^3y + 105xy$ 13.) $17x^5 + 34x^3 + 51x$ 14.) $2x^7 - 2x^6 - 64x^5 + 4x^3$ 15.) $6e^3f - 11ef$

To **factor a trinomial** like $\mathbf{x}^2 + 7\mathbf{x} + 10$ in general, think of FOIL in reverse. The first term, \mathbf{x}^2 , is the result of \mathbf{x} times \mathbf{x} . Thus the first term of each binomial factor is \mathbf{x} :

(**x** + __) (**x** + __)

The coefficient of the middle term and the last term of the trinomial are two numbers whose product is 10 and whose sum is 7. Those numbers are 2 and 5. Thus, the factorization is: $(\mathbf{x} + 2) (\mathbf{x} + 5)$

Try X	-Games to find your factors		10		
Solve 16.)	e each by factoring. (a + 6)(a + 2) = 0	17.)	7 $z(z-1)^2 = 0$	18.)	(3y + 7)(y + 5) = 0
19.)	x ² -11 x =0	20.)	2 a ³ + 10 a ² =0	21.)	x ² -12 x + 36=0
22.)	n ² -2 n = 15	23.)	x ² -7 x = 18	24.)	x ² + 2 x = 99
25.)	x ² = 4 x - 4	26.)	x ² = 14 x - 48	27.)	x ² = 14 x - 45
28.)	x ² -10 x + 24=0	29.)	y ² + y = 42	30.)	- x ² + 6 x =- 72
31.)	$30 + 11x + x^2 = 0$	32.)	x ² + 29 x + 100=0	33.)	x ³ + 16 x ² + 64 x=0

34.) As an object is propelled upwards, gravity pulls it back to Earth. This relationship can be expressed by the formula $s = v_i t - \frac{1}{2}gt^2$, where s is the distance above the starting point, v_i is the initial velocity, t is time elapsed, and g is the acceleration of gravity. Find how long it will take a model rocket propelled into the air at an initial velocity of 80 ft/s to return to ground level, if the acceleration of gravity is $32ft/s^2$.