SUM AND DIFFERENCE OF CUBES

- Factor
- SOAP {Same, Opposite, Always Positive}
- (a b)(a² ab b²)
- 1.) Factor
 - A. 64y³ 125

B. $16x^3 + 54$

C. x⁶ + 27y³

CHARACTERISTICS OF GRAPHS

- Identify Domain, Range, Intervals on Increase and Decrease (use x values), Roots (xintercepts), y intercept, End behavior, Absolute Min/Max (very lowest/highest), Relative Min/Max (turning points)
- Minimum degree is always +1 of the number of turning points

2.) Provide the information below for the following graph:		graph:
Domain:	Range:	4 2 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3
Number of turns:	_ Minimum degree:	-14 - 12 - 10 - 8 - 6 - 4 - 2 - 2 - 2 - 4 - 6 - 8 - 10 - 12
Intervals of Increase:		
Intervals of decrease:		
What are the real roots?		Y intercept:
Absolute Maximum		Absolute minimum:
Relative Maximum	F	Relative minimum:
End Behavior: $x \to \infty, f(x)$	→	
$x \to -\infty, f(x)$	→	

Unit 3- Polynomial Functions

3.) Determine the end behavior of the following polynomials:

a.)
$$f(x) = 2x^2 - 3x - 8$$

 $x \to \infty, f(x) \to$
 $x \to -\infty, f(x) \to$
b.) $g(x) = -x^5 + 2x^3 - 5x$
 $x \to \infty, f(x) \to$
 $x \to -\infty, f(x) \to$

FINDING ROOTS

- Find possible rational roots (p/q's) p= all factors of the constant & q= all factors of the leading coefficient
- Use the table of values or factor to find 1 root and then use synthetic division to get the
 polynomials down to a quadratic function so you can factor or do quadratic formula to find all
 roots
- Number of roots will match the degree
- 4.) List all the possible rational roots of the polynomial: $f(x) = 2x^4 - 3x^2 + x - 8$

5) Find all roots of the polynomial: $f(x) = 2x^3 + 3x^2 - 59x - 30$

WRITING POLYNOMAILS FROM ROOTS

- Use roots to write the factors of the polynomial (factors and roots have opposite signs)
- If "i" is a root then "-i" is also a root ; if $\sqrt{\#}$ is a root then $\sqrt{\#}$ is also a root (even if not listed)
- Multiply factors (using foil or distributive property) to get a polynomial in standard form
- For root x = 3 + i, 3 i; use the shortcut $[x^2 sumx + product]$ to get the trinomial

Write a polynomial in standard form given the roots.

6)
$$x = -3$$
, $\frac{-5}{4}$, 2
7) $x = 4$, $\sqrt{6}$
8) $x = 5$, $4 - i$, $4 + i$

SKETCHING GRAPHS

- Know how to sketch graphs from factored form and standard form (Factor to get into factored form)
 - Multiplicity: exponent on the factor; helps you decide what the graph does at each zero; multiplicity of odds: crosses; multiplicity of even: bounces
 - Odd degree/positive LC: $\downarrow\uparrow$; Odd degree/negative LC: $\uparrow\downarrow$
 - \circ Even degree/positive LC: $\uparrow\uparrow$; Even degree/negative LC: $\downarrow\downarrow$
 - \circ Number of turning points will be -1 from the degree, then -2 till you get to zero
- Degree of the function in factored form: all multiplicities added together; Degree in standard form: highest exponent

9.) Graph the polynomial function showing zeros, y-intercept, and end behavior. Identify the characteristics of the function:

