SUM AND DIFFERENCE OF CUBES

- Factor
- SOAP \{Same, Opposite, Always Positive\}
- (a b) $\left(a^{2} \quad a b \quad b^{2}\right)$
1.) Factor
A. $64 y^{3}-125$
B. $16 x^{3}+54$
C. $x^{6}+27 y^{3}$

CHARACTERISTICS OF GRAPHS

- Identify Domain, Range, Intervals on Increase and Decrease (use x values), Roots (xintercepts), y intercept, End behavior, Absolute Min/Max (very lowest/highest), Relative Min/Max (turning points)
- Minimum degree is always +1 of the number of turning points
2.) Provide the information below for the following graph:

Domain: \qquad Range: \qquad
Number of turns: \qquad Minimum degree: \qquad
Intervals of Increase: \qquad

Intervals of decrease: \qquad
What are the real roots? \qquad Y intercept: \qquad
Absolute Maximum \qquad Absolute minimum: \qquad
Relative Maximum \qquad Relative minimum: \qquad
End Behavior: $x \rightarrow \infty, f(x) \rightarrow$ \qquad

$$
x \rightarrow-\infty, f(x) \rightarrow
$$

\qquad
3.) Determine the end behavior of the following polynomials:
a.) $f(x)=2 x^{2}-3 x-8 \quad x \rightarrow \infty, f(x) \rightarrow$ \qquad
b.) $g(x)=-x^{5}+2 x^{3}-5 x \quad x \rightarrow \infty, f(x) \rightarrow$ \qquad
$x \rightarrow-\infty, f(x) \rightarrow$

FINDING ROOTS

- Find possible rational roots (p / q 's) $p=$ all factors of the constant \& $q=$ all factors of the leading coefficient
- Use the table of values or factor to find 1 root and then use synthetic division to get the polynomials down to a quadratic function so you can factor or do quadratic formula to find all roots
- Number of roots will match the degree
4.) List all the possible rational roots of the polynomial:

$$
f(x)=2 x^{4}-3 x^{2}+x-8
$$

5) Find all roots of the polynomial: $f(x)=2 x^{3}+3 x^{2}-59 x-30$

WRITING POLYNOMAILS FROM ROOTS

- Use roots to write the factors of the polynomial (factors and roots have opposite signs)
- If " i " is a root then " $-i$ " is also a root ; if $\sqrt{\#}$ is a root then $-\sqrt{\#}$ is also a root (even if not listed)
- Multiply factors (using foil or distributive property) to get a polynomial in standard form
- For root $x=3+i, 3-i$, use the shortcut [$x^{2}-$ sumx + product] to get the trinomial

Write a polynomial in standard form given the roots.
6) $x=-3, \frac{-5}{4}, 2$
7) $x=4, \sqrt{6}$
8) $x=5,4-i, 4+i$

Unit 3- Polynomial Functions

SKETCHING GRAPHS

- Know how to sketch graphs from factored form and standard form (Factor to get into factored form)
- Multiplicity: exponent on the factor; helps you decide what the graph does at each zero; multiplicity of odds: crosses; multiplicity of even: bounces
- Odd degree/positive LC: $\downarrow \uparrow$; Odd degree/negative LC: $\uparrow \downarrow$
\bigcirc Even degree/positive LC: $\uparrow \uparrow$; Even degree/negative LC: $\downarrow \downarrow$
○ Number of turning points will be -1 from the degree, then -2 till you get to zero
- Degree of the function in factored form: all multiplicities added together; Degree in standard form: highest exponent
9.) Graph the polynomial function showing zeros, y-intercept, and end behavior. Identify the characteristics of the function:
$f(x)=-x^{2}(x+4)(x-2)$

Zeros Multiplicity	Cross/Bounce.
- \quad	
Y-intercept:	
Degree of the polynomial:	
Pos./Neg. Leading Coefficient?	
$\begin{aligned} & \text { End Behavior: } \mathrm{x} \rightarrow \backslash \infty, \mathrm{f}(\mathrm{x}) \\ & \mathrm{x} \rightarrow \\ & \rightarrow-\infty, \mathrm{f}(\mathrm{x}) \end{aligned}$	

