ADDING AND SUBTRACTING POLYNOMAILS

- To add, just combine like terms.
- To subtract, distribute the negative and then combine like terms.
- Standard form: exponents in descending order

Add or subtract the following polynomials. Write your answer in standard form.
1.) $\left(4 x^{2}-6 x+9\right)+\left(x^{2}-5 x-12\right)$
2.) $\left(5 x^{3}-7 x^{2}+3 x-8\right)+\left(-x^{4}-6 x^{3}+2 x^{2}-5\right)$
3.) $\left(x^{2}+3 x-8\right)-\left(2 x^{2}+5 x-6\right)$

NAMING POLYNOMIALS AND PARTS OF A POLYNOMIAL

- Name polynomials by their degree: constant, linear, quadratic, cubic, quartic, etc.
- Name polynomials by their number of terms: monomial, binomial, trinomial, polynomial
- Name the parts of a polynomials: terms, coefficients, constants, etc.

Name the leading coefficient, degree and constant in the following polynomial:
4.) $5 x-3 x^{4}+x^{2}+12$

Leading Coefficient: \qquad
Degree: \qquad
Constant: \qquad

MULTIPLYING POLYNOMIALS

- Use FOIL or the distributive property to multiply binomials and trinomials
- Use Pascal's Triangle to multiply or expand binomials raised to a power greater than 2
- Pascal's Triangle:
5.) Use Pascal's triangle to expand the following binomial: $(2 x-3)^{4}$

6.) What is the coefficient of the third term in the expansion of $(y-2 x)^{4}$?
7.) What is the $2^{\text {nd }}$ term in the expansion of $(3 x-1)^{5}$?

DIVIDING POLYNOMIALS

- Use long division to divide polynomials
- Use synthetic division to divide polynomials
8.) Use synthetic division to find the quotient of $\left(2 x^{3}-3 x^{2}+x-8\right) \div(x-2)$.
9.) Determine whether the following are roots of: $x^{3}-13 x+12$:
a.) 1 \qquad
b.) -1 \qquad
c.) 2 \qquad
d.) -2 \qquad
e.) 3 \qquad
f.) -3 \qquad
g.) How many other roots of the polynomial are there and what are they?

OPERATIONS WITH FUNCTIONS

- Understand function notation and be able to add, subtract, multiply, and evaluate using it
- Find composite functions: $f(g(x)), g(f(x)), f(h(x))$, etc. [plug the inside function into the x of the outside function and simplify]
- Inverse of functions:
- To find: Algebraically: switch x \& y in the function and solve for y; Graphically: switch the x's and y 's of the order pairs of the function
- Will be symmetrical across the line $y=x$
- To check if two functions are inverses: find $f(g(x))$ and $g(f(x))$; If those are equal they are inverses
- One to One functions: pass the vertical line test and the horizontal line test

Use the following functions to answer \#10-\#18

$$
f(x)=x^{2}+1 \quad g(x)=3 x-2 \quad h(x)=-2 x^{2}
$$

10.)

$$
f(x)+h(x)
$$

11.) $f(x)-g(x)$
12.) $f(x) * h(x)$
13.) $\quad f(g(x))$
14.) $g(h(x))$
15.) $(f * g)(-1)$
16.) $g(h(-2))$
17.) $g^{-1}(x)$
18.) Graph $f(x)$ and its inverse:

X	F(x)	X	$f^{-1}(x)$
-3		-3	
-2		-2	
-1		-1	
0		0	
1		1	
2		2	
3		3	

19.) Is the graph of $\mathrm{f}(\mathrm{x})$ and $f^{-1}(x)$ one to one?

