ADDING AND SUBTRACTING POLYNOMAILS

- To add, just combine like terms.
- To subtract, distribute the negative and then combine like terms.
- Standard form: exponents in descending order

Add or subtract the following polynomials. Write your answer in standard form.

- 1.) $(4x^2 6x + 9) + (x^2 5x 12)$
- 2.) $(5x^3 7x^2 + 3x 8) + (-x^4 6x^3 + 2x^2 5)$
- 3.) $(x^2 + 3x 8) (2x^2 + 5x 6)$

NAMING POLYNOMIALS AND PARTS OF A POLYNOMIAL

- Name polynomials by their degree: constant, linear, quadratic, cubic, quartic, etc.
- Name polynomials by their number of terms: monomial, binomial, trinomial, polynomial
- Name the parts of a polynomials: terms, coefficients, constants, etc.

Name the leading coefficient, degree and constant in the following polynomial:

4.) $5x - 3x^4 + x^2 + 12$

Leading Coefficient:_____

Degree:____

Constant:_____

MULTIPLYING POLYNOMIALS

- Use FOIL or the distributive property to multiply binomials and trinomials
- Use Pascal's Triangle to multiply or expand binomials raised to a power greater than 2
- Pascal's Triangle:
 - 5.) Use Pascal's triangle to expand the following binomial: $(2x 3)^4$

6.) What is the coefficient of the third term in the expansion of $(y - 2x)^4$?

7.) What is the 2nd term in the expansion of $(3x - 1)^5$?

DIVIDING POLYNOMIALS

- Use long division to divide polynomials
- Use synthetic division to divide polynomials
- 8.) Use synthetic division to find the quotient of $(2x^3 3x^2 + x 8) \div (x 2)$.
- 9.) Determine whether the following are roots of: $x^3 13x + 12$:
 - a.) 1 _____
 - b.) -1 _____
 - c.) 2_____
 - d.) -2 _____
 - e.) 3 _____
 - f.) -3 _____

g.) How many other roots of the polynomial are there and what are they?

OPERATIONS WITH FUNCTIONS

- Understand function notation and be able to add, subtract, multiply, and evaluate using it
- Find composite functions: f(g(x)), g(f(x)), f(h(x)), etc. [plug the inside function into the x of the
 outside function and simplify]
- Inverse of functions:
 - To find: Algebraically: switch x & y in the function and solve for y; Graphically: switch the x's and y's of the order pairs of the function
 - Will be symmetrical across the line y = x
 - To check if two functions are inverses: find f(g(x)) and g(f(x)); If those are equal they are inverses
- One to One functions: pass the vertical line test and the horizontal line test

Use the following functions to answer #10 - #18

 $f(x) = x^2 + 1$ g(x) = 3x - 2 $h(x) = -2x^2$

10.) f(x) + h(x) 11.) f(x) - g(x) 12.) f(x) * h(x)

13.)	f(g(x))	14.) $g(h(x))$	Unit 2- Operations with Polynomials 15.) $(f * g)(-1)$
16.)	g(h(-2))		17.) $g^{-1}(x)$

